Supplementary data for:

In Vivo Penetration Mechanics and Mechanical Properties of Mouse Brain Tissue at Micrometer Scales

Andrew A. Sharp, Alicia M. Ortega, Diego Restrepo, Douglas Curran-Everett and Ken Gall

In Press: *Transactions on Biomedical Engineering*
Supplement to Figure 2:

Load-displacement response for insertion and removal of the 200 μm diameter flat punch probe with an insertion rate of 822 μm/s. (A) Duplicate load-displacement curves for insertion into the olfactory bulb. (B) A general schematic of the load-displacement curve for the insertion and removal of a flat punch probe. K_1 is the slope of the linear portion of the Stage I response. K_2 is the slope of the linear portion of the response during probe removal. E is the modulus of the tissue, d is the diameter of the probe, μ is the coefficient of friction between the probe and the surrounding tissue, and F_{crit} is the force at which the flat punch probe penetrates the tissue.
Supplement to Figure 3(a):

The effect of rate on the load-displacement response for insertion and removal of the 200 μm diameter flat punch probe in the cortex. Duplicate load-displacement curves for insertion at rates of (A) 104 μm/s and (B) 11 μm/s.
Supplement to Figure 3(a):

The effect of rate on the load-displacement response for insertion and removal of the 200 μm diameter flat punch probe in the olfactory bulb. Duplicate load-displacement curves for insertion at rates of (C) 104 μm/s and (D) 11 μm/s.
Supplement to Figure 3(b):

The effect of probe size on the load-displacement response for the insertion and removal of the flat punch probe. Duplicate load-displacement curves for the 100 μm diameter probe inserted into the cortex at insertion rates of (A) 822 μm/s, (B) 104 μm/s and (C) 11 μm/s.
Supplement to Figure 3(c):

Load-displacement response for insertion and removal of the sharpened 200 μm diameter probe with an insertion rate of 822 μm/s. Duplicate load-displacement curves for insertion into the (A) cortex and (B) olfactory bulb. (C) A general schematic of the load-displacement curve for the insertion and removal of a sharpened probe. \(K_3 \) is the slope of the force-displacement response during probe insertion. \(K_2 \) is the slope of the linear portion of the response during probe removal. \(E \) is the modulus of the tissue, \(d \) is the diameter of the probe, \(\mu \) is the coefficient of friction between the probe and the surrounding tissue, and \(F_{cut} \) is the cutting force of the tissue.
Supplement for Figure 3(c):

Load-displacement response for insertion and removal of the sharpened 200 μm diameter probe with an insertion rate of 11 μm/s. Duplicate load-displacement curves for insertion into the (D) cortex and (E) olfactory bulb.