Electrocardiography

Paced Rhythms


 

Home Pacemaker Classifications Interpreting Paced Rhythms Complex Pacemaker Activity

 

Introduction

Today, there are many types of pacemakers with many different functions. In order to interpret ECGs with paced rhythms, it is important to understand the basic functions of pacemakers and how these functions manifest on the surface ECG. After the basic functions are understood, pacemaker malfunctions and other subtle functions can be interpreted on the ECG.

This chapter addresses the different types of pacemakers with their various functions and classifications. In addition, it will review what to look for on the ECG in order to identify pacemaker malfunctions.


 

Pacemaker Classifications

Pacemakers have one to three leads which provide pacing and sensing activity. They are classified using three, four and sometimes even five letters which describe the function of the pacemaker. These functions include which chambers are sensed, which chambers are potentially paced, which chambers cause inhibition of the pacemaker and if the pacemaker has the ability to be responsive to activity.

The first letter identifies what chamber is paced. The letter can be A (atrial only), V (ventricular only) or D (dual or both chambers). It is not difficult to identify what chamber is being paced when present on the ECG but, because most pacemakers pace on demand, a device may have the ability to pace a chamber and not be represented on the ECG.

The second letter identifies what chamber is sensed. Like the paced chamber, A represents atrial sensing only, V represents ventricular sensing only and D identifies a pacemaker that has the ability to sense both chambers.

The third letter represents activity in the specific chambers that will inhibit the pacemaker. Inhibition of a pacemaker is a simple concept and identifies inhibition of pacing activity. Pacemakers are preprogrammed to pace at a certain rate. Once the time period elapses that would allow the heart rate to fall below this set rate, the pacemaker will pace. If a natural beat occurs prior to the preprogrammed time, the pacemaker allows the heart to use its intrinsic rhythm rather than pacing. This provides two major benefits. First, the natural activation of the heart provides better hemodynamic function. The second benefit is that by decreasing the amount of pacing, there is longer battery life for the pacemaker allowing for fewer battery changes. The same letters (A,V,D) and I (inhibited) are used for the third position.

The fourth letter that is ability of the pacemaker to be rate responsive. There are many ways pacemakers are able to identify increasing activity. The concept is that with increasing activity and increasing oxygen demand by the body, the pacemaker will increase the rate at which it fires. This function is identified in the fourth slot as an R (rate responsive). Although this function is relatively difficult to appreciate on standard ECG due to the short time frame of the tracing (6 seconds), it is an important concept when evaluating serial ECGs.

The table shows the common pacemaker classifications in an organized fashion that makes the lettering system easier to understand.

First Letter Chamber Paced

Second Letter Chamber Paced

Third Letter Chamber Inhibited

Description
A A I Atrial demand pacing, inhibited by sensed atrial activity
V V I Ventricular demand pacing, inhibited by sensed ventricular activity
D D D Atrial and ventricular demand pacing, inhibited by both chambers, will pace ventricle in response to atrial activity
D D I Atrial and ventricular demand pacing, inhibited by both chambers, will not pace ventricle in response to atrial activity

 

Return to Top


 

Interpreting Paced Rhythms

Interpreting paced rhythms can range from very simple to very complex. The biggest obstacle to interpreting pace rhythms is identifying the paced beats. Modern pacemakers provide low voltage spikes on the ECG that can easily go unnoticed. Unfortunately, there is no single lead that will consistently demonstrate the pacemaker spikes. When any wide complex rhythm is present it is always a good idea to take a quick look at all leads to look for occult pacemaker spikes.

Once pacemaker activity is identified, the next step is to determine if the activity is a normal function or a malfunction. Most pacemakers are set to pace between 50 and 70 beats per minute (there are clinical scenarios where the set rate may be outside of this range). This chapter will review the two most common types of pacemakers implanted: the DDD and VVI pacemakers.

As outlined above, the DDD pacemaker senses both the atrium and ventricle, paces both atrium and ventricle and is inhibited by both the atrium and ventricle. Starting with the atrial lead, it is designed to pace the atrium if there is no activity after a set time that corresponds to the preset rate. If there is atrial activity, the pacing function will be inhibited and the pacemaker will not fire. Ventricular pacing is slightly more complex and involves an AV delay. The AV delay is a mechanism designed to decrease the battery usage of the pacemaker and allows for natural conduction from the atrium to the ventricle through the AV node. Once there is atrial activity, either intrinsic or paced, the ventricular lead is prepared to pace. If, after a preset time for AV delay, the ventricle is not activiated, the ventricular lead will pace. The AV delay is usually set around 200 milliseconds (the accepted cutoff for first degree AV block). Similar to the atrial lead, if ventricular activity occurs before the predetermined rate, the ventricular lead will be inhibited and not pace. This may occur with either an intrinsically conducted atrial beat or with a premature ventricular complex.

Return to Top

 

Complex Pacemaker Activity

There are many functions of pacemakers that are well beyond the scope of this module. Dysfunctions involving sensing should be identifiable. This normal pacemaker function can be under active or over active and both are clinically relevant.

Sensing informs the pacemaker when to pace (no activity sensed) and when not to pace (activity sensed). If native activity is present and the pacemaker does not identify it, inappropriate pacing will occur. This can be identified on the surface ECG by inappropriate pacemaker spikes. There may be native atrial or ventricular activity with pacemaker spikes that do not correlate to activity in either chamber. The biggest concern with undersensing is the occurrence of a pacemaker spike on a T wave leading to ventricular tachycardia. Undersensing may be intermittent or constant.

Oversensing can be detrimental as well. The pacemaker may interpret activity outside of the designated chamber and inhibit the pacemaker. Common sources include chest wall activity and ventricular activity. If the pacemaker is oversensing ventricular activity, there may be no output from the pacemaker. This makes it necessary for an escape focus to take over pacing activity. There may be profound bradycardia or even ventricular standstill.

The pacemaker also may oversense ventricular activity as atrial activity and can lead to pacemaker mediated tachycardia (PMT). In PMT, a reentry circuit is set up and the pacemaker completes the circuit. The mechanism involves a paced ventricular beat where the atrial lead senses the T wave and interprets it as a P wave. Sensing the "P wave" causes the ventricular lead to fire and another paced ventricular beat. This cycle then continues and is frequently at a rate very close to the upper rate limit for the pacemaker. Note that a dual chamber pacemaker is necessary for PMT.

Failure to capture is another malfunction. The pacemaker may fire but fails to capture the chamber and result in chamber activity. This can be seen on the surface ECG as a pacemaker spike that occurs in a portion of the ECG cycle where atrial or ventricular capture and activity should ensue. If the pacemaker spike occurs in a portion of the ECG where the ventricle is still refractory, it cannot be determined if there is failure to capture because no electrical stimulus during the refractory period will lead to activity.

Return to Top