Peripheral Neurology: NEUROPATHY Clinical presentation, exam, diagnosis, treatment, prognosis **JAMES GILCHRIST, MD MARCH 26, 2021**

Peripheral Neuropathy

- Biology
 Epidemiology
 Clinical presentation
- Determining Etiology
- Treatment
 - Disease Altering
 - Symptomatic

axonal neuropathy

demyelinating neuropathy

PRIMARY MYELINOPATHY (e.g. Informatory)

FIGURE 7. A diagram of the cardinal pathologic features of an inflammatory PNS myelinopathy. Axons are spared as is CNS myelin. Following the attack, the remaining Schwann cells divide. The denuded segments of axons are remyelinated, leaving them with shortened internodes.

Demyelinating neuropathy

Teased fiber preparation

Slow anterograde: 1-2 mm/day Fast anterograde: 200-400 mm/day Retrograde transport: 100-200 mm/day

Copyright © 2006 Nature Publishing Group Nature Reviews | Neuroscience

Nerve conduction studies

Axonal neuropathy

Low amplitude Normal latency Normal conduction velocity

Demyelinating neuropathy

Classes of Nerve Injury (Mononeuropathy)

Class 1: NEUROPRAXIA

Segmental Demyelination

Remyelination

CLASS I - ACUTE NERVE INJURY (e.g. Compression)

Normal

CLASS 2 NERVE INJURY

DEGENERATION & ABBERANT REGENERATION IN (CLASS 3) NERVE INJURY

Epidemiology

- A study of 4191 subjects over age 55
 - 17% had symptoms suggestive of PN
 - 7% had one exam finding
 - 4% had two exam findings
- A study of Type 2 diabetics
 - After 10 years 42% had PN
- Studies of patients with HIV
 - Up to 63% have evidence of PN

Epidemiology

 Impact of peripheral neuropathy
 25% of medical costs in diabetics (estimated yearly at \$10 billion)
 Major contributor to falls in the elderly

Symptoms/signs

DISTAL>proximal

<u>Sensory</u>

- Sensory loss
 - Small fiber-pin, temp
 - Large fiber-position
 - Paresthesia
 - Pain

- Ataxia
- Hyporeflexia

Motor
Weakness
Atrophy
Cramping
Easciculations

Fasciculations

<u>Autonomic</u>

- Hypo/hyper hydrosis
- Orthostasis
- Bladder, bowel
- Skin, hair changes

Distal Symmetric Polyneuropathy

Endocrine diseases	Carcinomatous / Lymphomatous axonal sensorimotor
Diabetes mellitus	polyneuropathy
Hypothyroidism	Paraproteinemia
Acromegaly	Infectious diseases
	Acquired immunodeficiency syndrome
Nutritional diseases	Lyme disease
Alcoholism	Leprosy
Vitamin B ₁₂ deficiency	
Folate deficiency	Sarcoidosis
Whipple's disease	
Postgastrectomy syndrome	Toxic neuropathy
Gastric surgery for obesity	Acrylamide
Thiamine deficiency	Carbon disulfide
	Dichlorophenoxyacetic acid
Hypophosphatemia	Ethylene oxide
Critical illness neuropathy	Hexacarbons
Uremia	Carbon monoxide
Connective tissue diseases	Organophosphorus esters
Rheumatoid arthritis	Glue sniffing
Polyarteritis nodosa	
SLE	Metal neuropathy
Churg-Strauss vasculitis	Chronic arsenic intoxication
Cryoglobulinemia	Mercury
Amyloidosis	Gold
Celiac disease	Thallium

Drugs causing neuropathy

Axonal Vincristine **Paclitaxel (Taxol)** Nitrous oxide Colchicine Isoniazid Hydralazine Metronidazole (Flagyl) **Pyridoxine** Didanosine Lithium Alpha interferon Dapsone **Phenytoin (Dilantin)** Cimetidine **Disulfiram** (Antabuse) Chloroquine Ethambutol Amitriptyline (Elavil, Endep)

Demyelinating **Amiodarone (Cordarone)** Chloroquine Suramin Gold **Neuronopathy** Thalidomide (Synovir) **Cisplatin (Platinol) Pyridoxine**

? statins

Work-up for mild (sensory) PN

- Fasting glucose (Hgb A1C, ?GTT)
- Methylmalonic acid, Vit B12
- TSH, BUN, Cr
- Lyme, ESR, RF, ANA
- SPEP, IFE
- Copper
 - (Anemia or myelopathy)
- Transglutaminase Antibodies
 - (Diarrhea or rash)

Diabetic neuropathies

- Distal symmetric polyneuropathy
 - Likely both metabolic and vascular
 - Glycemic control
 - Glucose intolerance
- Radiculoplexoneuropathy (amyotrophy)
 - Mostly Type 2 (male predominance)
 - Due to microvasculitis
- Cranial neuropathies
- Mononeuropathies
- Thoracolumbar radiculopathies

When to go beyond basic studies

- Rapid progression
- Significant weakness or ataxia
- Unusual pattern of symptoms/deficits
 - Asymmetry
 - Arms > Legs or Proximal ≥ distal
 - Motor only
 - Cranial nerve involvement
- Preserved Reflexes
- Family History

When to go beyond basic studies

- Rapid progression *
- Significant weakness or ataxia *
- Unusual pattern of symptoms/deficits
 - Asymmetry
 - Arms > Legs or Proximal ≥ distal *
 - Motor only
 - Cranial nerve involvement *
- Preserved Reflexes
- Family History *
 - * May be demyelinating

Demyelinating neuropathies

- Charcot-Marie-Tooth disease type 1
- Hereditary Neuropathy with Pressure Palsies
- Acute Inflammatory (AIDP, "GBS")
 - Post infectious (viral, campylobacter)
 - Post vaccinal
 - HIV (seroconversion)
 - ? Lyme
- Chronic Inflammatory (CIDP)
 - Monoclonal Gammopathies
 - Lymphoproliferative disorders

Chronic Demyelinating Polyneuropathies

Chronic Inflammatory Demyelinating Polyneuropathy (CIDP)

Acquired

- Relapsing or progressive
 Proximal AND distal weakness, areflexia
- NCS: demyelinating
- Responsive to immunomodulation
- Elevated CSF protein

Charcot-Marie-Tooth disease (CMT) Inherited, usually dominant (types 1 and 2) Type 1: "demyelinating" Type 2: "axonal" NCS only difference Slowly progressive Distal weakness and sensory loss. DTRs variable Not responsive to steroids

The electrodiagnostic distinctions between chronic familial and acquired demyelinative neuropathies

Richard A. Lewis, M.D., and Austin J. Sumner, M.D.

Table. Motor and sensory conduction studies (mean \pm SEM)

	Familial	Acquired	Normal
Motor conduction studies			
Median nerve	n = 18	$\mathbf{n} = 40$	n = 30
Distal latency (msec)	$9.9~\pm~0.5$	7.9 ± 0.9	$3.5~\pm~0.1$
Conduction velocity (m/sec)	17.6 ± 0.9	$29.9~\pm~2.0$	$56.5~\pm~0.5$
Ulnar nerve	n = 13	n = 40	n = 30
Distal latency	8.1 ± 0.7	6.0 ± 0.5	2.8 ± 0.1
Conduction velocity	15.6 ± 1.2	29.9 ± 1.9	54.2 ± 0.5
Sensory conduction studies			
Median nerve	n = 7	n = 14	n = 30
Amplitude (μV)	$2.3~\pm~0.5$	$7.5~\pm~2.3$	17.3 ± 1.2
Latency	7.1 ± 0.4	4.2 ± 0.6	2.7 ± 0.1

Familial vs Acquired demyelinating polyneuropathies

Figure 4. Bar graph comparing forearm motor CV between ulnar and median nerves.

Lewis, Sumner. Neurology 1982

The advent of Genetic Testing

FIGURE 1. Localization of myelin components in the mammalian CNS and PNS myelin sheaths. Mutations in PMP22 (CMT-1A, HNPP), P0 (CMT-1B), and Cx32 (CMT-X) are known to cause inherited neuropathies. Intracellular and extracellular refer to the cytoplasm of the myelinating Schwann cell. (Figure kindly provided by Dr. Steven Scherer.⁹²)

 Table 1. Electrophysiological findings of inherited demyelinating neuropathies.

Inherited disorders with uniform conduction slowing

- Charcot-Marie-Tooth 1A
- Charcot-Marie-Tooth 1B
- Dejerine-Sottas
- Metachromatic leukodystrophy
- Cockayne's disease
- Krabbe's disease

Inherited disorders with multifocal conduction slowing

- Hereditary neuropathy with liability to pressure palsies Charcot–Marie–Tooth X Adrenomyeloneuropathy
- Pelizeus–Merzbacher disease with proteolipid protein null mutation
- Refsum's disease

Lewis, Sumner, Shy. M&N 2000

Conclusion

- NCS important in establishing demyelination.
- Conduction block, temporal dispersion and asymmetry are not unique to CIDP.
- Understanding of different electrodiagnostic patterns of inherited neuropathies is important.
- Family history, genetic testing, response to therapy are important features of diagnosis.

When to go beyond basic studies

- Rapid progression
- Significant weakness or ataxia
- Unusual pattern of symptoms/deficits
 - Asymmetry *
 - Arms > Legs or Proximal ≥ distal
 - Motor only
 - Cranial nerve involvement
- Preserved Reflexes
- Family History

Differential diagnosis of Mononeuropathy Multiplex

- Diabetes
- Vasculitis
- Infections (Lyme, Leprosy, Hep C)
- Infiltrative (Sarcoid, amyloid, neoplastic)
- Inflammatory (Perineuritis)
- Demyelinating (Multifocal CIDP, MMN, MADSAM)
- Hereditary (HNPP)

Mononeuropathy multiplex

Vasculitis

Mononeuropathy multiplex

Amyloid

Mononeuropathy multiplex

HNPP: Tomaculous neuropathy

When to go beyond basic studies

- Rapid progression
- Significant weakness or ataxia
- Unusual pattern of symptoms/deficits
 - Asymmetry
 - Arms > Legs or Proximal ≥ distal *
 - Motor only *
 - Cranial nerve involvement
- Preserved Reflexes
- Family History

Proximal or pure motor neuropathy

- Amyotrophic Lateral Sclerosis
- Spinal Bulbar Atrophy (Kennedy disease)
- Spinal Muscular Atrophy
- Paraproteinemia
- Lead intoxication
- Porphyria
- Multifocal Motor Neuropathy
- Diabetic amyotrophy
- Brachial Plexitis

When to go beyond basic studies

- Rapid progression
 Significant weakness or ataxia
 Unusual pattern of symptoms/deficits
 - Asymmetry
 - Arms > Legs
 - Cranial nerve involvement
- Preserved Reflexes *
- Family History

Small fiber neuropathy

- Diabetes, glucose intolerance
- Alcoholic
- HIV
- Hep C
- Amyloid
- Vasculitis, Lupus, Sjogrens
- Sarcoid
- Idiopathic
 Normal Nerve Conduction Studies: no large fiber involvement

Small fiber neuropathy

Epidermal Nerve fiber density using paraxonal antibody PGP9.5

Diagnostic testing beyond lab work (summary)

- "Garden variety"- NCS
 Acute- CSF, NCS, biopsy if not demyelinating
- Multifocal- NCS, antibody testing, biopsy
- Demyelinating- NCS, CSF, genetic studies
- Small fiber- skin biopsy

Disease altering treatment: Demyelinating neuropathies

AIDP (GBS)

- Plasmapheresis
- IVIG

<u>CIDP</u> • IVIG

- Steroids
- Plasmapheresis
- Azathioprine
- ? Cytoxan
- ? Rituxan

Disease altering treatment

Vasculitis, perineuritis Steroids Cytoxan ?Azathioprine ?IVIG

Symptomatic treatment for neuropathic pain

Neuropathic pain: Pharmacologic approach

SNRI: serotonin-norepinephrine reuptake inhibitor; TCA: tricyclic antidepressant; NMDA: N-methyl-D-aspartate. UDTODate®

Copyrights apply

Symptomatic treatment for neuropathic pain

Anticonvulsants

- Gabapentin (Neurontin)
- Pregabalin (Lyrica)
- Carbamazepine (Tegretol)
- Valproic Acid (Depakote)
- Phenytoin (Dilantin)
- Topiramate (Topamax)
- Oxcarbezepine (Trileptal)
- Lamotrigine (Lamictal)
- Leviteracetam (Keppra)

