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FIGURE 1. A diagram of the principal components of the peripheral nervous system.



Motor Motos
nucleus A nucleus B

Muscle A

Figure 34-1 A typical muscle consists of many thousands
of muscle fibers working in parallel and organized into a
smaller number of motor units. A motor unit consists of a
motor neuron and the muscle fibers that it innervates, illus-
trated here by motor neuron Al The motor neurans innervat:
ing one muscle are usually clustered into an elongated motor
nucleus that may extend over one to four segments within the
ventral spinal cord. The axons from a motor nucleus exit the

Tendon

spinal cord in several ventral roots and peripheral nerves but
are collected into one nerve bundle near the target muscle. in
the figure, motor nucleus A includes all those motor neurons
innervating muscle A; muscle B is innarvated by motor neurons
lying in motor nucleus B. The extensively branched dendrites

of ane motor neuron tend to intermingle with those of motor
neurans from other nuclei,
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Differential sighs of the peripheral
nervous system

Cranial
Strength |[DTRs Sensory |Nerves
Anterior horn |4 diffusely |{ diffusely |normal motor
cell (ALS) (T diffusely) affected
Root/plexus |4 regional |{ regional |[J normal
regional
Nerve fiber |{ distally | distally ! distally |affected
If severe
Neuromus- |{ diffusely |{ diffusely |normal motor
cular junction affected
Muscle ! proximal |{ proximal |normal normal




Table 34-1 Innervation Numbers in Human Skeletal

Muscles

Alpha

motor Muscle Innervation
Muscle axons fibers number
Biceps brachii 774 580,000 750
Brachioradialis 333 >120.200  >410
Cricothyroid 112 18,550 155
Gastrocnemius 579 1LO42,000 1,800
(medial)
Interossei 119 40,500 340
dorsales (1)
Lumbricales (1) 96 10,269 107
Masseter 1452 929,000 640
Opponens pollicis 133 79,000 595
Platysma 1,096 27,100 25
Posterior 140 16,200 116
cricoarytenoid
Rectus lateralis 4,150 22,000 5
Temporalis 1,331 1,247,000 936
Tensor tympani 146 1,100 8
Tibialis anterior H5 272,850 613
Transverse 139 34,470 247
arytenoid

(Adapted, with permission, from Enoka 2008.)



The response to a single action potential is known
as a lwitch contraction. The time it takes the twitch to
reach its peak force, the contraction time, is one meas-
ure of the contraction speed of the muscle fibers that
comprise a motor unit. Slow-twitch motor units have
long contraction times; fast-twitch units have shorter
contraction times. A rapid series of action |:notc_ntfals
elicits superimposed twitches known as a tefanic con-
fraction or fetanus.

Two types of Muscle fibers

to identify type I and type Il muscle fibers. Slow con-
tracting motor units contain type | muscle fibers, and
fast contracting units include type II fibers. The type Il
fibers can be further classified into the least fatigable
(type Ila) and most fatigable (type IIb, IIx, or Ild),
Another commonly used scheme distinguishes mus-
cle fibers on the basis of genetically defined isoforms
of the myosin heavy chain. Those in slow contracting
motor units express myosin heavy chain-I, those in fast
contracting and least fatigable units express myosin
heavy chain-lla, and fibers in fast contracting and most
fatigable units express myosin heavy chain-IIb or -IIx.
There is a high degree of correspondence between the
two classification schemes for muscle fibers.

Changes in the contractile properties of motor
units involve adaptations in the structural specializa-
tions and biochemical properties of muscle fibers. The

The order in which motor units are recruited 1s
highly correlated with several indices of motor unit
size, including the size of the motor neuron cell bod-
ies, the diameter and conduction velocity of t!1e axons,
and the amount of force that the muscle fibers can
exert. Because the recruitment threshold of a motor
unit depends on the membrane resistance of the motor
neuron, which is inversely related to its surface area,
a given synaptic current will produce larger changes
in the membrane potential of small-diameter ‘motor
neurons. Consequently, increases in the net excitatory

C Recruitment of 64 mator units in one muscla

100 -

Twitch force of mator unit (mN)
I=

Recruitment threshold [N)



neuron size: The smallest motor neuron is recruited
first and the largest motor neuron last (Figure 34-5).
This effect is known as the size principle of motor neu-
ron recruitment, a principle enunciated by Elwood
Henneman in 1957.

Figure 34-5 The response of a motor

neuron to synaptic input depends on

its size. Two motor neurons of different

sizes have the same resting membrane

potential (V) and receive the same exci-

tatory synaptic current (/) from a spinal
interneuron. Because the small motor

neuron has a smaller surface area, it has

fewer parallel ion channels and therefore

a higher resistance (A,,.). According

to Ohm's law (V= IR}, /.. in the small

neuron produces a large excitatory post-

synaptic potential (EPSP) that reaches

threshold, resulting in the discharge Vim
of an action potential. The small motor
neuron has a small-diameter axon that
conducts the action potential at a low
velocity (v,...) to fewer muscle fibers. v
In contrast, the large motor neuron has
a larger surface area, which resultsina
lower transmembrane resistance (A..)
and a smaller EPSP that does not reach
threshold in response 10 /..

Smalldiameatar g
mOLor Neuron

First, the sequence of motor-neuron recruitment is
determined by spinal mechanisms and not by higher
regions of the nervous system. This means that the
brain cannot selectively activate specific motor units.
Second, motor units are activated in order of increasing
fatigability, so the least fatigable motor units available
produce the initial force required for a sp.eciﬁc task.
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Size-Related Properties of Motor Neurons

Properties that Increase
with Size

Diameter of soma and axon
Conduction velocity

Complexity of axonal collaterals
Membrane area, dendritic extent
Rheobase

Muscle fiber diameter

Maximum force output

Properties that Decrease
with Size

Resistance to fatigue
la EPSP amplitude
Input resistance
Membrane resistance
Time constant
Duration of after-
hyperpolarization
Twitch contraction time
Twitch relaxation time



Type S Type FR Type FF
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The three motor unit types (S, FR, and FF) can be defined experimentally by measuring their contractile properties and fatigability.
Panels A—-C show recordings of muscle force, with insets in A showing recordings of motor neuron action potentials. Note different time and amplitude
calibration scales for each of the motor units. (A) Single twitches produced by one action potential of the motor neuron. (B) Maximal force produced by
repetitive stimulation of the motor neuron to produce an unfused tetanus. In addition to differences in maximal force, the “sag” property, a dropping
off of tension during maintained stimulation, is seen in FR and FF units. (C) Fatigability is demonstrated by a drop in the tension produced by a single
twitch after short periods of activation, as noted. Note that S units show little fatigue, whereas FF units fatigue within 30 s. Reproduced with permission
from Burke, Levine, Tsairis, and Zajac (1973).



Schematic demarcation of dermatomes
! shown as distinct segments. There
[ty J is actually considerable overlap
= between any two adjacent dermatomes
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A Simplified View of The PNS
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CELLULAR ORGANIZATION
OF PERIPHERAL NERVES
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FIGURE 2. A diagram of a peripheral nerve in cross section. The nerve contains three fascicles.
The figure on the left represents a high magnification of a myelinated axon in cross-section.
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Table 1| The moving structures of axonal transport*

Rate class Average rate Moving structures
Fast components
Fast anterograde 200400 Golgi-derived vesicles
mm day™’ and tubules
(=2-5um s} (secretory pathway)
Bi-directional 50-100 Mitochondria
mm day!
(=0.5-1 ums")
Fast retrograde 200-400 Endosomes, lysosomes
mm day™’ (endocytic pathway)
(=2-5 um s7')
Slow components
Slow component 'a’ 0.3-3 Neurofilaments,
mm day™' microtubules®
Slow component ‘b’ 2-8 Microfilaments,

mm day’' supramolecular
(=0.02-0.02 pym s7') complexes of the
cytosolic matrix

Composition
(selected examples)

Synaptic vesicle proteins,
kinesin, enzymes of
neurotransmitter metabolism

Cytochromes, enzymes of
oxidative phosphorylation

Internalized membrane
receptors, neurotrophins,
active lysosomal hydrolases

Meurofilament proteins,
tubulin, spectrin, tau proteins

Actin, clathrin, dynein,
dynactin, glycolytic
enzymes

1. Mitochandrial AAAAARAA
polypeptide
synthesis L,_ 4+
Cytoplasmic translation
Anterograde transport

Mucleus 3. Trans

*Data compiled from REFS 1,41,44. T In some neurons, microtubule proteins are transported in slow

component ‘b’ as well as slow component ‘a’,
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Because one sarcomere can shorten by a certain length
with a given maximal velocity, both the range of motion
and the maximal shortening velocity of a muscle fiber are
proportional to the number of sarcomeres in series. The
force that a myofibril can exert is equal to the average sar-
comere force and is not influenced by the number of sar-
comeres in series. The force capacity of a fiber, however,
depends on the number of sarcomeres in parallel and
hence on the diameter or cross-sectional area of the fiber.

At the level of the muscle, the functional attributes
of the fibers are modified by the orientation of the fasci-
cles to the line of pull of the muscle and the length of the
fiber relative to the muscle length. In most muscles the
fascicles are not parallel to the line of pull but fan out
in feather-like (pennate) arrangements (Figure 34-11).

Figure 34-11 Five common
arrangements of tendon and mus-
cle. (Reproduced, with permission,
from Alexander and Ker 1990.)

Tendon

more fibers can fit into a given volume as the penna-
tion angle increases, muscles with large pennation
angles typically have more myofibrils in parallel and
hence large cross-sectional areas. Given the linear rela-
tion between cross-sectional area and maximal force
(~0.25 N-mm™), these muscles are capable of a greater
maximal force. However, the fibers in pennate muscles
are generally short and have a lesser maximal shorten-
ing velocity than those in nonpennate muscles.
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