September 25, 2020 Vic Ramkumar, Ph.D.

Intracellular Signaling & Signal Propagation

CELL SIGNALING CYCLE

Section 1

What is Signal Transduction?

- Transmission of a signal from a hormone or drug to produce some cellular function.
- Signals are generally detected by receptor proteins present on the cell surface.
- Cell surface receptors discriminate the signals and channel these to specific cellular effectors to produce a function.
- Drugs mimic (agonists) or antagonize (antagonists) the effects of endogenous chemicals on receptors.

EXTRACELLULAR SIGNALLING

Relevant Concepts

<u>Types of signalling processes</u>: Endocrine, paracrine, autocrine synaptic, plasma membrane attached protein

Ligand

Second messengers

Receptors - G protein coupled receptors, ion channel receptor, tyrosine kinase-linked receptor, receptors with enzymatic activity

Local Communication CYTOKINES (IL-2), ADENOSINE, ADP

(b) Paracrine signaling

Molecular Cell Biology, 4th Ed., Chapter 20

(c) Autocrine signaling

Target sites on same cell

CYTOKINES, ADENOSINE

Key:

(d) Signaling by plasma membrane-attached proteins

Molecular Cell Biology, 4th Ed., Chapter 20

Model of Synaptic Transmission

- Agonists impart their information by increasing the generation of second messengers
- (b) Cell surface receptors

SECOND MESSENGERS

• Second messenger convey the signal from receptor and effector to intracellular targets

Section 2: Relevant Concepts

- G protein-coupled receptor
- G proteins heterotrimeric, monomeric
- Cholera toxin, pertussis toxins
- Adenylyl cyclase
- β-adrenergic receptors
- Inositol 1,4,5 trisphosphate (IP₃)
- Diacyl glycerol
- Phosphodiesterases

RECEPTOR CLASSIFICATION

A. G-Protein Coupled Receptors - transmit signals from Hormones and drugs through G proteins

(a) G protein-coupled receptors (epinephrine, glucagon, serotonin)

Molecular Cell Biology, 4th Ed., Chapter 20

Associated Diseases: congestive heart failure, Parkinson's disease, migraine, asthma, hypertension, pulmonary edema. GPCRs serve as the targets of most prescribed drugs.

6 3

Drugs Regulating G-Protein Coupled Receptors Contribute to a High Percentage of Prescribed Drugs

- **Vasodilation** (β_2 adrenergic receptor agonists)
- **Vasoconstriction** (α_1 adrenergic receptor agonists)
- Positive inotropic/chronotropic (β₁ adrenergic receptor agonists)
- **Bronchodilator (**β₂ adrenergic receptor agonists)
- Parkinson's disease (dopamine D2 agonists)
- Alzheimer's disease (muscarinic receptor agonists)
- □ Migraines (serotonin receptor)

A. G-Protein Coupled Receptors (~1000 identified)

RECEPTOR CLASSIFICATION

Molecular Cell Biology, 4th Ed., Chapter 20, Fig. 20-16

G Protein Activation and Functions

Model of a G-protein Coupled Receptor

Model of Heterotrimeric G Protein Activation

Molecular Cell Biology, Sixth Edition © 2008 W.H. Freeman and Company

TABLE 15-1	Major Classes of	Mammalian	Trimeric G Proteins an	d Their Effectors*
------------	------------------	-----------	------------------------	--------------------

G_{α} CLASS	ASSOCIATED EFFECTOR	2ND MESSENGER	RECEPTOR EXAMPLES
G _{αs}	Adenylyl cyclase	cAMP (increased)	β-Adrenergic (epinephrine) receptor; receptors for glucagon, serotonin, vasopressin
G _{αi}	Adenylyl cyclase K ⁺ channel (G _{βγ} activates effector)	cAMP (decreased) Change in membrane potential	α ₂ -Adrenergic receptor Muscarinic acetylcholine receptor
$\mathbf{G}_{\mathrm{aolf}}$	Adenylyl cyclase	cAMP (increased)	Odorant receptors in nose
$G_{\alpha q}$	Phospholipase C	IP ₃ , DAG (increased)	α_1 -Adrenergic receptor
$G_{\alpha o}$	Phospholipase C	IP ₃ , DAG (increased)	Acetylcholine receptor in endothelial cells
G _{αt}	cGMP phosphodiesterase	cGMP (decreased)	Rhodopsin (light receptor) in rod cells

*A given G_{α} subclass may be associated with more than one effector protein. To date, only one major $G_{\alpha s}$ has been identified, but multiple $G_{\alpha q}$ and $G_{\alpha i}$ proteins have been described. Effector proteins commonly are regulated by G_{α} but in some cases by $G_{\beta \gamma}$ or the combined action of G_{α} and $G_{\beta \gamma}$. IP₃ = inositol 1,4,5-trisphosphate; DAG = 1,2-diacylglycerol.

sources: See L. Birnbaumer, 1992, Cell 71:1069; Z. Farfel et al., 1999, New Eng. J. Med. 340:1012; and K. Pierce et al., 2002, Nature Rev. Mol. Cell Biol. 3:639.

Table 15-1

Molecular Cell Biology, Sixth Edition

© 2008 W. H. Freeman and Company

Coupling of G Protein to K+ Channel Activation

Figure 15-18 Molecular Cell Biology, Sixth Edition © 2008 W. H. Freeman and Company Signal Transduction in the Visual System

Figure 15-20 Molecular Cell Biology, Sixth Edition © 2008 W. H. Freeman and Company

Regulators of G Protein Signalling (RGS)

Terminating the signal is essential to limit the response
RGS are GTPase activating proteins (GAPs) for G_i and, Gq, G_o

• RGS inhibited signalling mediated through G_i, Gq and G_o

 RGS does not act as a guanine nucleotide dissociation inhibitor (GDI)or a guanine nucleotide dissociation stimulator (GDS) and does not act on G_s

Section 3: Relevant Concepts

Cyclic AMP Cyclic AMP dependent protein kinase Phosphoprotein phosphatase Amplification PI hydrolysis Calmodulin Protein kinase C Store-operated Ca²⁺ channel PI-3 kinase Phospholipase C

Figure 15-22 *Molecular Cell Biology, Sixth Edition* © 2008 W.H. Freeman and Company

Adenylyl Cyclase Isoforms

Copyright © 2002, Elsevier Science (USA). All rights reserved.

Activation of Protein Kinase A

cAMP

Active PKA

+

С

R

С

R

Inactive PKA Catalytic subunits

C C C + R R + Regulatory

Figure 15-23a Molecular Cell Biology, Sixth Edition © 2008 W.H. Freeman and Company

Activation of Protein Kinase A by Cyclic AMP

□ AKAP = A kinase associated proteins -localizes PKA to specific regions of the cell and target these sites for cyclic AMP responses

□ CNB-A/CNB-B are two cyclic AMP binding sites on the regulatory subunit of PKA

□ Cyclic AMP binding changes the conformation of the regylatory subunits allowing dissociation of the catalytic subunits

□ Cyclic AMP interacts with Glu200 and Arg209 of the regulatory subunit

Figure 15-23b Molecular Cell Biology, Sixth Edition © 2008 W. H. Freeman and Company

Regulation of Glycogen Synthesis and Metabolism

Protein Kinase A Regulates Glycogen Synthesis and Metabolism in the Liver and Skeletal Muscle

Section 4: Receptor Regulation

Relevant Concepts

Endocytosis

Beta adrenergic receptor kinase

Arrestin

Homologous and heterologous desensitization

B-arrestin

TERMINATING THE SIGNAL: Time-dependent transit of β-receptor upon agonist exposure

- PKA dependent phosphorylation of the β-adrenergic receptor
- β-adrenergic receptor kinase mediated phosphorylation of the β-adrenergic receptor
- Sequestration
- Receptor degradation and down-regulation

Agonist-induced desensitization of the β_2 -adrenergic receptor

- Homologous desensitization requires activation by agonist for that receptor (PKA, β -ARK)
- Heterologous desensitization involves activation of a different receptor (PKA)

β-adrenergic receptor kinase (βARK)

Ca²⁺ Mobilizing Receptors

Receptor \longrightarrow Rise in Intracellular Ca²⁺

<u>Relevant Receptors (G_-coupled)</u>

- Alpha₁ adrenergic receptor (vasoconstriction)
- Angiotensin 1
- Bradykinin (B_1 and B_2 receptors) pain/inflammation
- Muscarinic acetylcholine (M₁) cerebral cortex (memory)
- Serotonin receptor $(5HT_{2A})$ migraine, depression
- Histamine (H₁) receptor (bronchoconstriction, vasodilation)

Receptors coupled to the Gq protein

Phospholipase C Generates IP₃ and Diacylglycerol

Michel Berridge

• Phospholipase C cleaves PIP-2 to generate DAG and IP3

- IP3 increases cytosolic Ca²⁺ release from the endoplasmic reticulum
- DAG and Ca²⁺ activates protein kinase C
- Store operated channels replenishes intracellular Ca²⁺

Protein Kinase C Activation

Additional role of Ca²⁺:Binding to Calmodulin

(b)

<u>Calmodulin</u> – a major Ca²⁺ binding protein in the cell. It activates a Ca²⁺ –calmodulin dependent protein kinase.

> Molecular Cell Biology, 4th Ed., Chapter 20, Fig. 20-41b

Alberts et al., Eds., Molecular Biology of THE CELL, 3rd Ed., 1994, Fig. 15-35

Ca²⁺ Calmodulin-Dependent Activation of Endothelial Nitric Oxide Synthase

- Acetylcholine stimulates intracellular Ca²⁺ release via muscarinic receptors
- Ca²⁺/calmodulin couples GPCR to activation of nitric oxide synthase
- Nitric oxide synthase converts arginine to citrulline and NO
- NO mediates relaxation of vascular smooth muscle via increasing cyclic GMP and PKG

RELEVANT CONCEPTS

Receptor dimerization Autophosphorylation Guanine nucleotide exchange factor (GEF) GTPase activating protein (GAP) Adaptor proteins (GRB2, Sos) Growth factors stimulate Ras activation

Monomeric G proteins

- Ras proteins
- Rac, Rho, cdc42
- Signaling of growth factor receptors
- SH2 domains

SH2 = Src homology domain 2

Cooper, G.M., The Cell: A Molecular Approach, 1997, Chap. 13, Fig. 13.15

Curr Opin Drug Discov Devel 2004 Jul;7(4):478-86. Farnesyltransferase inhibitors as anticancer agents: critical crossroads. Doll RJ, Kirschmeier P, Bishop WR

Molecular Cell Biology, 4th Ed., Chapter 20, Fig. 20-22

SECOND MESSENGER - TRANSCRIPTION

Relevant Concepts

Early response genes i.e. fos, jun

Ternary complex factor

Serum response element

Protein phosphatases

Calcineurin

DARPP-32

Receptor Tyrosine Kinase - Gene Transcription Pathway

Molecular Cell Biology, 4th Ed., Chapter 20, Fig. 20-48b

Drugs Signaling Pathways

Nobel Prizes Awarded for G Protein Signaling

Cyclic AMP - Earl Sutherland (1971)

- Protein kinases Edmund Fischer and Erwin Krebs (1992)
- G protein Alfred Gilman and Martin Rodbell (1994)
- NO/cyclic GMP Robert Furchgott, Louis Ignarro, Ferid Murad (1998)
- Signal transduction in the nervous system Arvid Carlsson, Paul Greengard, Eric Kandel (2000)
- Adrenergic Receptors Bob Lefkowitz and Brian Kobilka (2012)